N-Acyl Homoserine Lactones in Diverse Pectobacterium and Dickeya Plant Pathogens: Diversity, Abundance, and Involvement in Virulence
نویسندگان
چکیده
Soft-rot bacteria Pectobacterium and Dickeya use N-acyl homoserine lactones (NAHSLs) as diffusible signals for coordinating quorum sensing communication. The production of NAHSLs was investigated in a set of reference strains and recently-collected isolates, which belong to six species and share the ability to infect the potato host plant. All the pathogens produced different NAHSLs, among which the 3-oxo-hexanoyl- and the 3-oxo-octanoyl-L-homoserine lactones represent at least 90% of total produced NAHSL-amounts. The level of NAHSLs varied from 0.6 to 2 pg/cfu. The involvement of NAHSLs in tuber maceration was investigated by electroporating a quorum quenching vector in each of the bacterial pathogen strains. All the NAHSL-lactonase expressing strains produced a lower amount of NAHSLs as compared to those harboring the empty vector. Moreover, all except Dickeya dadantii 3937 induced a lower level of symptoms in potato tuber assay. Noticeably, aggressiveness appeared to be independent of both nature and amount of produced signals. This work highlights that quorum sensing similarly contributed to virulence in most of the tested Pectobacterium and Dickeya, even the strains had been isolated recently or during the past decades. Thus, these key regulatory-molecules appear as credible targets for developing anti-virulence strategies against these plant pathogens.
منابع مشابه
Genome Sequence of the Quorum-Quenching Rhodococcus erythropolis Strain R138
Rhodococcus erythropolis strain R138 was isolated from the rhizosphere of Solanum tuberosum and selected for its capacity to degrade N-acyl-homoserine lactones, quorum-sensing signals used as communication molecules by the potato pathogens Pectobacterium and Dickeya. Here, we report the genome sequence of Rhodococcus erythropolis strain R138.
متن کاملInhibition of Quorum Sensing Activity by Ethanol Extract of Scutellaria baicalensis Georgi
Over a 30-year period, it has become apparent that a diversity of bacterial species commonly control expression of gene circuits in a population-dependent manner via a regulatory mechanism known as quorum sensing (QS). In QS, small diffusible molecules called autoinducers mediate the ability to monitor the size of a bacterial population [1-3]. Autoinducers produced by bacteria diffuse out and a...
متن کاملIn Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway
The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. e...
متن کاملStructure-activity relationships of Erwinia carotovora quorum sensing signaling molecules.
Production of virulence factors and secondary metabolites is regulated in the phytopathogen Erwinia carotovora by quorum sensing involving N-acylated homoserine lactone (AHL) signaling molecules. Non-hydrolyzable AHL analogues were synthesized and screened in vivo. The biological activity of each compound was correlated with its ability to bind Erwinia AHL receptor proteins (LuxR homologues) in...
متن کاملAutoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen.
Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacteria...
متن کامل